Set-up of the S.M.E.¶
The Screened Massive Expansion of pure Yang-Mill theory is defined by a simple
shift of the kinetic and interaction
terms of the gauge-fixed, renormalized Faddeev-Popov Lagrangian:
where is chosen so that the zero-order transverse gluon
propagator
is massive rather than massless:
The shift gives rise to a new two-point gluon vertex ,
which must be included in the Feynman rules of perturbation theory.
In full QCD, in addition to the shift of the gluon sector, a shift is also performed
in the quark sector. Namely, the kinetic and interaction
terms of the quark Lagrangian are redefined
so that the light quarks propagate with a mass
which is much larger than
their bare (UV) mass
, and not related to the latter by perturbative
corrections:
where
being the zero-order quark propagator. The two-point quark vertex
,
is then also included in the Feynman rules of the theory.
Features of the S.M.E.¶
The Screened Massive Expansion of QCD:
reduces to ordinary perturbation theory in the UV limit (in particular, it is renormalizable),
yields propagators which are in very good agreement with the lattice data in Euclidean space,
can be extended to the whole complex Minkowski space to study features such as the complex-conjugate poles of the gluon and quark propagators,
can be made self-contained when optimized by principles of gauge invariance,
yields a strong running coupling which is finite (no Landau poles) and small enough to allow the use of perturbation theory.
The gluon propagator¶
In a general covariant gauge, the one-loop gluon polarization
can be expressed in terms of three functions,
,
and
,
or four, if the contribution due to the crossed quark
loop is also included in the polarization,
In this documentation, we refer to the first choice as the uncrossed (type='uc')
variant of the gluon propagator, and to the second choice as the crossed (type='cr')
variant of the gluon propagator. In pure Yang-Mills theory (no quarks, i.e., ),
this distinction is irrelevant, since there are no quark loops in the gluon polarization.
The function can be obtained by differentiating
with respect to the quark chiral mass,
The inverse gluon dressing function is then given by
for the uncrossed variant of the propagator, or
for its crossed variant. In the above equations, is an additive
renormalization constant.
The functions ,
,
and
are defined in the
SmeQcd.oneloop.gluon module, together with the gluon
propagator , dressing function
,
and spectral function (in Minkowski space) ,
The ghost propagator¶
In a general covariant gauge, the one-loop ghost self-energy
can be expressed in terms of two functions,
and
:
The inverse ghost dressing function is then given by
where is an additive renormalization constant.
The functions and
are defined in the
SmeQcd.oneloop.ghost
module together with the ghost propagator , dressing function
,
and spectral function (in Minkowski space) ,
The quark propagator¶
The quark self-energy can be expressed as
where and
are scalar functions. To
one loop, if only the ordinary quark loop and quark-crossed quark loop are included
in the quark self-energy, we say that the quark propagator is computed in the
minimalistic scheme (
type='ms'). If, on the other hand,
the gluon-crossed quark loop is also included in the self-energy, we say that
the propagator is computed in the vertex-wise scheme (type='vw').
Finally, we refer to a scheme in which the internal gluon line is replaced by
the principal part of the dressed gluon propagator as the complex-conjugate
scheme (type='cc').
In the minimalistic scheme, the quark self-energy is given by the sum
of the ordinary quark loop
and of the quark-crossed loop:
In the vertex-wise scheme, the gluon-crossed loop is
also added to the self-energy:
In the complex-conjugate scheme, the quark-self energy is given by two terms, each
of which is obtained by replacing – where
is the Minkowski gluon pole – in
, and multiplying the term
by the corresponding residue
:
For an in-depth discussion of the minimalistic, vertex-wise and complex-conjugate schemes, see G. Comitini, D. Rizzo, M. Battello, and F. Siringo, Phys. Rev. D 104, 074020 (2021).
In any scheme, the quark propagator can be expressed as
where
and the functions and
are obtained from the quark
self-energy as
In the above equations, is the quark field-strength renormalization constant.
To one loop, the following quantities are often used in place of
and
:
The function is also denoted by
,
The vector and scalar components of the functions ,
and
are defined
in the module
PySmeQcd.oneloop.quark, together with the functions
,
,
,
,
, the vector and scalar components
of
the quark propagator,
and the vector and scalar components of the
quark spectral function in Minkowski space,